
Coding Db2
Performance
By the Book!

Craig S. Mullins
Mullins Consulting, Inc.

15 Coventry Court

Sugar Land, TX 77479

www.mullinsconsulting.com

2

Craig S. Mullins
President & Principal Consultant

www.mullinsconsulting.com

Craig’s current Db2 and DBA books

www.mullinsconsulting.com/books.html

 This document is protected under the copyright laws of the United States and other countries as an unpublished

work. This document contains information that is proprietary and confidential to Mullins Consulting, Inc., which shall

not be disclosed outside or duplicated, used, or disclosed in whole or in part for any purpose other than as

approved by Mullins Consulting, Inc. Any use or disclosure in whole or in part of this information without the

express written permission of Mullins Consulting, Inc. is prohibited.

© 2019 Craig S. Mullins and Mullins Consulting, Inc. (Unpublished). All rights reserved.

Mullins Consulting, Inc

Details at:

http://www.mullinsconsulting.com/books.html

Agenda ◎ Db2 performance from the application
programmer point of view

◎ Based on my latest book: A Guide to Db2
Performance for Application Developers

◎ High-level walk-thru of the first 21 chapters
of the book

◎ Quick overview of the remaining 8 chapters

3

https://tinyurl.com/db2-craig

https://store.bookbaby.com/bookshop/book/index.aspx?bookURL=A-Guide-to-Db2-Performance-for-Application-Developers&b=p_bu-ba-or
https://store.bookbaby.com/bookshop/book/index.aspx?bookURL=A-Guide-to-Db2-Performance-for-Application-Developers&b=p_bu-ba-or

The First 21
Chapters

◎ Chapter 1 – Defining
Performance

◎ Chapter 2 – Code Relationally
◎ Chapter 3 – Minimize Data

Access
◎ Chapter 4 – Avoid Black Boxes
◎ Chapter 5 – Concurrency
◎ Chapter 6 – Locking and Isolation
◎ Chapter 7 – Don’t Code
◎ Chapter 8 – Indexing
◎ Chapter 9 – Clustering
◎ Chapter 10 – Optimization
◎ Chapter 11 – Seq vs. Random

◎ Chapter 11 – Seq vs. Random
◎ Chapter 12 – Joins
◎ Chapter 13 – Stages, Indexability

 and Sargability
◎ Chapter 14 – Filter Factors
◎ Chapter 15 – Access Paths
◎ Chapter 16 – Sorting & Grouping
◎ Chapter 17 – Parallelism
◎ Chapter 18 – Functions
◎ Chapter 19 – Stored Procedures
◎ Chapter 20 – Static vs. Dynamic SQL
◎ Chapter 21 – Many Ways to SQL

4

Chapter 1: What is Database Performance?

Throughput
◎ Defines the

overall capacity of
the computer.

◎ It is a composite
of I/O speed, CPU
speed, parallel
capabilities, and
efficiency of
system software.

Resources
◎ The hardware and

software tools at
the disposal of the
system are known
as the resources
of the system

Contention
◎ Contention is the

condition in
which two or
more components
of the workload
are attempting to
use a signle
resource in a
conflicting way.

5

Database performance = the optimization of resource use to increase throughput and

minimize contention, enabling the largest possible workload to be processed.

Workload
◎ Workload defines

the demand. It is a
combination of
transactions,
batch jobs, ad hoc
queries, BI queries
+ analysis, utilities,
and commands
executing at any
given time

Breaking Down
Database

Performance

◎ There are four major areas that must be in sync
& tuned to deliver database performance:
◎ The Application

■ SQL and host language code

◎ The Database
■ Database design, organization, indexing

◎ The Subystem or Instance
■ System parameters, memory pools, locking, distributed

connections, etc.

◎ The Environment
■ Operating system, network, storage, etc.

6

But Let’s
Simplify…

Db2

Performance
Really Boils

Down to Three
Things

CPU

I/O Concurrency

7

Chapter 2: Code Relationally

Tables are not files,
they are based on
sets.
◎ Sets are not ordered.
◎ Members of a set

are all of the same
type.

◎ When you perform
an operation on a
set, the action
happens "all at
once" to all the
members of the set.

Rows are not
records.
◎ Records are

sequential.
◎ Rows have no

physical order
(conceptually).

Columns are not
fields.
◎ Columns are

typed (and can be
Null); not so for
fields.

◎ Without a
program a field
has no meaning at
all.

8

Learn what is meant by a relational database system.

The database is not a
set of files.
◎ Files have no

relationships set
within and among
them.

The Impact of
Coding

Relationally

◎ “Unlearn the “flat file” mentality!
◎ “Master file” processing is not appropriate for

optimal DB2 applications!
■ This is where you open a file, read a record, then

open another file and access a record in that new
file using the data you just read.

■ Instead… Learn to Join!

◎ Open Cursor is NOT the same as Open File
■ There is a lot going on “behind the scenes” when

you open a cursor.
■ The cursor does not always read ALL of the data

(usually) when you open the cursor
■ Depends on many things, but sorting is a big deal

9

The Impact on
Modification

When Coding
Relationally

◎ The SQL Insert, Update, and Delete operate on
sets, not individual rows or records.
◎ Unless you have opened up a Cursor and issued the

modification with WHERE CURRENT OF cursor

◎ Specifying appropriate Where clauses is VERY
important to make sure that you are impacting
only the data that is to be modified!

10

DELETE

FROM EMP;

DELETE

FROM EMP

WHERE EMPNO = ꞌ00010ꞌ;

Ask Only for
What You

Absolutely
Need

◎ Retrieve the minimum # of rows required
◎ Code appropriate WHERE clauses

◎ The only rows that should be returned to your program
should be those that you need to process

◎ Retrieve only the columns required - never more
◎ Don’t ask for what you don’t need

■ Sometimes shortened to  Avoid SELECT *

◎ This is a good idea (but it is not enough):

1. Insulation of programs from change

2. Performance

11

International DB2 Users Group

A Simple Tip to Save I/O

 Change this…

SELECT LAST_NAME, FIRST_NAME, JOB_CODE, DEPT

FROM EMP

WHERE JOB_CODE = ‘A’

AND DEPT = ‘MIS’;

 To this…

SELECT LAST_NAME, FIRST_NAME, ‘A’, ‘MIS’

FROM EMP

WHERE JOB_CODE = ‘A’

AND DEPT = ‘MIS’;

What is Wrong
with this SQL?

12

Why are we asking
for things we already

know?

Matching Data
Type and

Length

◎ When coding predicates, it is a good practice to
make sure the host variable data type/length
matches the data type/length of the column

◎ Or, for two columns, that the data type/length of
each matches

◎ This used to result in immediate degradation

◎ But no longer, so long as the arguments are
within the same data type family
■ Character to character
■ Numeric to numeric
■ Date/time to date/time

13

◎ Accessing the same data over and over consumes more resources

◎ Organize your program to avoid issuing the same SQL over and
over again… whenever possible
◎ So avoid processing the same data multiple times

 14

Chapter 3: Minimize Passes Through the Data

SELECT firstnme, midinit, lastname, empno

FROM emp

WHERE workdept = ′A01′ AND sex = ′F′;

SELECT firstnme, midinit, lastname, empno

FROM emp

WHERE workdept = ′A01′ AND YEAR(hiredate) > 1999;

SELECT firstnme, midinit, lastname, empno

FROM emp

WHERE workdept = ′A01′

AND

(sex = ′F′ OR YEAR(hiredate) > 1999);

Another
Possibility for

Reformulating
SQL to

Minimize
Passes Thru

the Data 15

You Can Use
CASE in

UPDATE
Statements,

too!

Consider:
◎ Every employee with

more than 18
years of education is to
be given a 1% raise.

◎ But some departments
have decided to give
different raise
amounts.

16

UPDATE emp

SET salary = CASE workdept

 WHEN ′A01′

 THEN salary+(salary*.05)

 WHEN ′C01′

 THEN salary+(salary*.025)

 WHEN ′D11′

 THEN salary+(salary*.10)

 WHEN ′D21′

 THEN salary+(salary*.75)

 ELSE

 salary+(salary*.01)

WHERE edlevel > 18;

http://www.craigsmullins.com/dbu_0703.htm

Chapter 4

Reasons to
Avoid Black

Boxes

◎ Short cuts
◎ Extra code means

extra work
◎ Ignorance of SQL is

not a virtue
◎ SQL is already an

access method
◎ Single point-of-

failure

18

◎ Concurrency (along with I/O and CPU) is one of the three major
factors that impact the performance of Db2 applications.
◎ Recall that the goal is to reduce I/O and CPU usage, while increasing

concurrency

◎ A lock management system is required to provide concurrent
access

◎ Db2 supports locking at four levels, or granularities:
◎ Table space, Table, Page, and Row

◎ Db2 also provides LOB locking for large objects

■ BLOBs, CLOBs, and DBCLOBs

19

Chapter 5: Code for Concurrency

Timeouts Lock timeouts can
be a frequent cause
of performance
issues.
A timeout occurs
when Db2 waits too
long for lock
(because another
process holds an
incompatible lock).

When your request
times out it will
either fail and must
be rerun, or the
request can be
issued again if retry
logic is coded into
the program.

Timeouts increase
wait time and
reduce
concurrency.

When you
experience a
timeout, another
process holds a
lock on the data
that you are trying
to modify.

So, you should try
to minimize the
duration of locks
that are being held
changes.

20

21

Deadlocks

Tactics for
Concurrency

◎ Minimize deadlocks by coding updates in same sequence for
all programs

◎ Issue modification SQL statements as close to the end of the
UOW as possible
◎ The later in the UOW the update occurs, the shorter the duration

of the lock
◎ Encourage Lock Avoidance

◎ ISOLATION(CS) / CURRENTDATA(NO) - can be used only with
read only cursors

◎ Use LOCK TABLE judiciously – cautiously!
◎ Consider ISOLATION(UR) to avoid locking

◎ But be careful (more on Isolation levels coming up)
◎ Exercise caution when using tools with Auto-Commit (e.g.

TOAD, SPUFI)

22

23

Avoid Bachelor Programming Syndrome

Plan and implement a COMMIT strategy

Failure to do so will cause locking issues

• TIMEOUTs and DEADLOCKs

◎ Allowing concurrent access requires a locking mechanism
◎ Without locking, the following sequence would be possible:

■ PGM1 retrieves a row from the Employee table for Empno ‘000010’.

■ PGM1 issues an update statement to change that employee’s salary
to 55000.

■ PGM2 retrieves the Employee row for Empno ‘000010’. Because the
change was not committed, the old value for the salary, 52750, is returned.

■ PGM1 commits the change, causing the salary to be 55000.

■ PGM2 changes a value (in a different column) and commits the change.

■ The value for salary is now back to 52750, negating the change made by
PGM1.

24

Chapter 6: Locking and Isolation Levels

Locking and
Isolation

Levels

Isolation levels can modify the way your program operates
◎ Isolation is a component of ACID. To achieve isolation a

locking mechanism is required.
◎ At a high level it means that transactions can run at the same

time. Any transactions running in parallel have the illusion
that they are the only ones running (no concurrency).

◎ In other words, to the user, it appears that the system is
running only a single transaction at a time.

◎ No other concurrent transaction has visibility to the
uncommitted database modifications made by any other
transactions.

◎ There are various levels of isolation that can impact data
integrity if you do not understand how they work

25

The Isolation
Levels

◎ You can specify the Isolation level for the
entire program or at the SQL-statement-
level.

◎ CS: Cursor Stability

◎ RR: Repeatable Read

◎ RS: Read Stability

◎ UR: Uncommitted Read

26

Cursor
Stability (CS)

◎ CS is the Db2 implementation of the SQL standard read
committed isolation level.

◎ CS is probably the most common Db2 isolation level in
use in production applications because it offers a good
tradeoff between data integrity and concurrency.
◎ CS read-only page locks are released as soon as another

page is accessed.

◎ When CS is specified the transaction will never read
data that is not yet committed; only committed data can
be read.
◎ But if your program tries to read the same data twice

there is no guarantee that it will be the same data.

27

Repeatable
Read (RR)

◎ With RR isolation all page locks are held until they are
released by a COMMIT (or ROLLBACK).
◎ Potentially improved data integrity at the expense of less

concurrency.

◎ An RR page locking strategy is useful when an
application program requires consistency in rows that
may be accessed twice in one execution of the program.

◎ Example: consider a reporting program that scans a
table to produce a detail report, and then scans it again
to produce a summarized managerial report. If the
program is bound using CS, the results of the first
report might not match the results of the second.

28

Read Stability
(RS)

◎ Read Stability (RS) is similar RR, but a little less.
◎ A retrieved row or page is locked until the end of the

unit of work; no other program can modify the data
until the unit of work is complete, but other processes
can Insert rows that might be read by your application
if it accesses the row a second time.

◎ Consider using RS over RR only when your program can
handle retrieving a different set of rows each time a
cursor or singleton SELECT is issued.
◎ If using read stability, be sure your application is not

dependent on having the same number of rows returned
each time.

29

Uncommitted
Read (UR)

aka “Dirty Read”

◎ UR isolation level provides read-through locks, also
know as dirty reads. UR can minimize concurrency
problems, but at the cost of data integrity issues.
◎ When you’re using UR, an application program can read

data that has been changed but is not yet committed.

◎ UR can be a performance booster because programs
bound using UR will read data without taking locks.

◎ Can cause data that is never in the database to be read
and processed!

◎ My experience: UR is used too frequently.
◎ With little concern for the possibility of impacting data

integrity & accuracy

30

UR Usage
◎ The general rule of thumb is to avoid UR

whenever the results must be 100 percent
accurate.

◎ Examples when UR is not a good idea:
◎ Calculations that must balance are being performed

on the selected data

◎ Data is being retrieved from one source to insert to
or update another

◎ Production, mission-critical work is being performed
that cannot contain - or cause - data integrity
problems

31

◎ Use built-in Db2 functionality instead of writing your own code!
◎ Utilities

■ LOAD, UNLOAD, Export

◎ Functions
■ BIFs and UDFs

◎ Stored Procedures
◎ Triggers
◎ MERGE (UPSERT functionality)
◎ SELECT FROM …

 INSERT | UPDATE | MERGE

32

Chapter 7: Avoid Writing Code (when you can)
Chapter 18: Functions

There Are
Many BIFs

That Can
Simplify Your

Coding Efforts

Scalar Functions
Too many to list and
discuss. Here are a few
notable scalar
functions:
◎ ABS
◎ CEILING
◎ COALESCE
◎ LOCATE
◎ LOWER, UPPER
◎ LPAD, RPAD
◎ LTRIM, RTRIM
◎ OVERLAY
◎ RAND
◎ TRUNCATE
◎ …

Column Functions
◎ AVG

◎ COUNT

Returns integer

◎ COUNT_BIG
Returns
DECIMAL(31,0)

◎ COVARIANCE

◎ MAX

◎ MIN
◎ STDDEV

◎ SUM

◎ VARIANCE

Date/Time Functions
Too many to list and
discuss. Here are a few
notable ones:
◎ DATE
◎ DAYS
◎ HOUR
◎ MINUTE
◎ MONTH
◎ MONTHS_BETWEEN
◎ NEXT_DAY
◎ QUARTER
◎ TIMESTAMP
◎ WEEK
◎ YEAR
◎ …

33

◎ Perhaps the most important thing you can do to assure optimal
Db2 application performance is to ensure that there are
appropriate indexes to optimize your queries.

◎ When you specify columns in the WHERE clause of your SQL
queries, Db2 must search the data looking for rows that match.

◎ Without indexes, all access to data would have to scan all available
rows. Scans are very inefficient for very large tables.

◎ Usually, Db2 can find the correct data much quicker using an
index.

34

Chapter 8: The Importance of Indexes

35

How Does an Index Work?

❶

❷

❸

❹

Find 63

What Indexes Exist?
Know the indexes available to you as you
write your SQL so that your program will
use indexes if possible
Information on indexes that exist can be found in the Db2
Catalog

Ask your DBA for help if you do not have access

36

Physical
Storage

◎ Clustering determines the way that data is stored
physically, on disk.
◎ Clustering controls and sequences rows on disk,

contiguously by key values.

◎ It will have an impact on the way that you write your
SQL queries.

◎ Clustering is controlled in Db2 by means of an index.
◎ The left-to-right order of columns (as defined in the

index) defines the collating sequence for the data.

◎ There can be only one clustering sequence per table
(because physically the data can be stored in only one
sequence).

37

Chapter 9: Data Clustering

Clustered
versus

Unclustered
Data

38

◎ Relational database systems differ significantly
from traditional file-based systems

◎ When accessing files the programmer decides
what is accessed how and in what order.

◎ When accessing data using SQL from an RDBMS
(like Db2) the Relational Optimizer decides what
is accessed how and in what order.

39

Chapter 10: Relational Optimization

Physical Data
Independence

◎ You use SQL to specify what to retrieve, not how to
retrieve it.
◎ Doesn’t matter how data is physically stored. If indexes

are removed, DB2 can still access the data (less
efficiently). If a column is added to the table, the data
can still be manipulated by Db2 without changing the
program code.

◎ This is possible because the physical access paths to
Db2 data are not coded by programmers in application
programs but are generated by Db2.

◎ Compare this with older, legacy data manipulation
mechanisms (such as VSAM, IMS, and flat files).

40

What is the
Db2 Optimizer?

◎ The Db2 Optimizer basically works like an expert
system.
◎ An expert system is a set of standard rules that –

when combined with relevant data – can return an
expert opinion.

◎ The Db2 Optimizer renders expert opinions on
data retrieval methods for SQL queries based on
the relevant data stored in its system catalog.

◎ Statistics – as populated with RUNSTATS

41

The Db2 Optimizer – A Visual Representation

42

43

Chapter 11: Sequential and Random Data Access

Sequential and
Random Data

Access
(and clustering)

Random Access
◎ Get a row by means of a

key value

Sequential Access
◎ Get multiple rows by range

 Multiple values apply with =

BETWEEN, >, >=, <, <=

44

 SELECT FIRSTNME, LASTNAME, SALARY

 FROM EMP

 WHERE DEPTNO = ′A01′;

 SELECT FIRSTNME, LASTNAME

 FROM EMP

 WHERE SALARY > 25000.00;

 SELECT FIRSTNME, LASTNAME, SALARY

 FROM EMP

 WHERE EMPNO = ′00010′;

Which one

will benefit

most from

clustering?

Single Table
Access Paths

Table and Table Space Scans
◎ A scan reads every data page, examines each row on

the page to determine whether it satisfies the query
predicates and return only those rows that match.
◎ Sequential prefetch and sequential detection can access

pages before they are needed, priming the pump and
making a scan more efficient (next slide).

◎ Avoid table space scans for large tables (usually)
◎ Requires accessing every page/row; or at least every

page/row in a partition for a partition scan

◎ Indexed access usually outperforms scans: unless all
(most) pages/rows need to be read or the table is small

45

Why Sequential Prefetch
and Detection Can Help

Single Table
Access Paths -

Indexed

◎ Indexed Access

◎ Direct index lookup. Fastest way to
retrieve a single row

◎ Matching index scan

◎ Non-matching index scan

◎ Index screening

◎ Multiple index access

◎ One Fetch index access

47

Direct Row
Access

◎ Direct row access is another very efficient data access.
◎ If an application selects a row from a table that contains a

Rowid column, the row ID value implicitly contains the
location of the row.

◎ If you use that row ID value in the search condition of
subsequent Select, Delete, or Update operations, Db2
might be able to use direct row access to navigate
directly to the row.

◎ Although direct row access is very efficient, it is not
very practical because you must provide the Rowid
value in the query, which is usually not known to the
user or programmer.

48

Chapter 12: Joining

◎ In SQL, a join combines columns from one or
more tables
■ A table can be joined to itself

■ The join criteria need not be equality (<, >, etc.)

◎ Inner Join – most common
■ Creates a result table by combining column values of the

joined tables (A and B) based upon the join-predicate. The
query compares each row of A with each row of B to find all
pairs of rows which satisfy the join-predicate. When the join-
predicate is satisfied by matching non-NULL values, column
values for each matched pair of rows of A and B are combined
into a result row.

◎ Outer Join (Left, Right, and Full)
■ The joined table retains each row—even if no other matching

row exists.

49

50

Make Sure You
Include

Everything
Necessary

◎ Always provide join predicates (i.e. no Cartesian products)

◎ If Joining TableA to TableB to TableC then make sure there
are appropriate predicates
■ A→ B → C or A→ C → B

SELECT E.Empno, E.Fname, E.Lname, E.Address, D.Deptname

FROM Employee E,

 Department D

WHERE E.Workdept = D.Deptno

Types of Joins
◎ Each multi-table query

is broken down into
separate access paths.
◎ The optimizer

selects 2 tables &
creates an access
path for that join.

◎ Not done randomly,
but based on what
will be optimal.

◎ Then it goes to the
next table… and so
on.

◎ There are three join
methods (…well 4)

◎ Merge-Scan Join

◎ Nested Loop Join

◎ Hybrid Join (Db2
z/OS)

◎ Hash Join (Db2
LUW)

52

https://www.toadworld.com/platforms/ibmdb2/b/weblog/archive/2015/11/20/db2-optimization-and-access-paths-understanding-the-basics-part-2-join-methods

Basics of
Joining

◎ There are certain basics that are common to each join
method.
◎ First decision is which table should be processed first.

This table is referred to as the outer table. After this, a
series of operations are performed on the outer table to
prepare it for joining.

◎ Rows from the outer table are then combined to the
second table, called the inner table. A series of
operations are also performed on the inner table either
before, during or after the join.

◎ Although all joins are composed of similar steps, each of
the join methods is quite different when you get beyond
the generalities.

53

Inner versus
Outer?

◎ The smaller the table the more likely it will be the
outer table. This reduces the number of times the
inner table is re-accessed.

◎ If selective predicates can be applied, the table is
more likely to be chosen as the outer table –

◎ …because the inner table is only accessed for rows
satisfying the predicates applied to the outer table.

◎ In most cases the table with fewest duplicates will
be chosen as the outer table in a join.

◎ If index lookup can be done on one of the tables,
it is a good candidate to use as the inner table.

54

Types of Join
Methods

◎ Nested Loop Join
◎ Merge Scan Join
◎ Hybrid Join (z/OS only)
◎ Hash Join (LUW only)

55

Nested Loop
Join

◎ To perform a nested loop join (NLJ), a qualifying
row is identified in the outer table, and then the
inner table is scanned searching for a match.

◎ A qualifying row is one in which the
predicates for columns in the table match.

◎ When the inner table scan is complete, another
qualifying row in the outer table is identified. The
inner table is scanned for a match again, and so
on. The repeated scanning of the inner table is
usually accomplished with an index to minimize
I/O cost.

56

Merge Scan
Join

◎ With the merge scan join (MJ), the tables to be
joined need to be ordered by the join predicates.

◎ Each table must be accessed in order by the
columns that specify the join criteria. This
ordering can be the result of either a sort or
indexed access. After ensuring that both the outer
and inner tables are properly sequenced, each
table is read sequentially, and the join columns
are matched up. Neither table is read more than
once during a merge scan join.

57

Hybrid Join
(Db2 for z/OS

only)

◎ For DB2 for z/OS there is the hybrid join, which uses
data & pointers to access and combine the rows from
the tables being joined.

◎ You can think of it as a combination (or hybrid)
of nested-loop and merge join techniques. The
high-level steps employed by the hybrid join are:

1. Outer table rows are either retrieved in sequence using an index or the qualifying values are
retrieved and sorted.

2. For each unique value in the outer table, a matching index scan is used to find RIDs for rows of the
inner table.

3. Partial rows of qualifying RIDs are built from the inner table along with the qualifying columns from
the outer table using work table spaces.

4. The partial rows are sorted in RID sequence to eliminate duplicate RIDs.

5. Process the inner table with list prefetch.

58

Hash Join (Db2
for LUW only)

◎ For Db2 for Linux, Unix, and Windows, there
is the hash join. Hash join requires one or
more predicates of the form:

◎ …and for which the column types are the same.
◎ The inner table is scanned & the rows copied into memory buffers from the

sort heap allocation. The memory buffers are divided into partitions based
on a “hash code” computed from the column(s) of the join predicate(s).

◎ If the size of the first table exceeds the available sort heap space, buffers
from selected partitions are written to temporary tables. After processing
the inner table, the outer table is scanned and its rows are matched to the
inner table rows by comparing the “hash code.”

59

table1.ColX = table2.ColY

Also Star Join

For data
warehousing

and BI type of
queries

 60

Which Join
Method When?

◎ In general, NLJ is preferable when a small
number of rows qualify for the join.

◎ As the number of qualifying rows increases, the
merge join becomes a better choice.

◎ In the case of a hash join, the inner table is kept
in memory buffers. If there are too few memory
buffers, then the hash join is obliged to spill. The
optimizer attempts to avoid this and so will pick
the smaller of the two tables as the inner table,
and the larger one as the outer table.

61

Chapter 13: Stages, Indexability and Sargability

◎ Db2 for z/OS – Stage 1 and Stage 2;
 Indexable and nonindexable

◎ Db2 for LUW – Data sargable and residual;
 Range-delimiting and index sargable

◎ Indexable
■ Does not mean that an index WILL be used
■ Just that an index CAN be used

◎ This information is documented in the Db2 manuals:
■ Db2 12 for z/OS: Managing Performance (SC27-8857)

Page 359…
■ Db2 11.1 for LUW: Performance Tuning

Page 258… Table 57

62

SARGable:

Has a Search

Argument to

query with

Build Better
Programs by

Avoiding
Stages 3 & 4

◎ We learned about Stages 1 (data sargable) and 2
(residual), with Stage 1 being more efficient than
Stage 2. Now let’s learn about Stages 3 and 4.
◎ Stage 3 can be thought of as moving predicates

from SQL into your programs.

◎ Stage 4 can be thought of as the black box we
talked about earlier.*

◎ If the data has to be brought into the program
before it is filtered out, performance will suffer!

■ Stage 1 better than Stage 2

■ Stage 2 better than Stage 3

■ Stage 3 better than Stage 4

63

* See slides 17 and 18

Chapter 14:
Filter Factors

◎ Filter factor is a ratio (a number between 0
and 1) that estimates I/O costs.

◎ It is an estimate of the proportion of table
rows for which a predicate is true.

◎ Depending on the type of predicate, the
optimizer plugs statistics from the Db2
Catalog into a filter factor formula to estimate
the number of rows that can qualify for that
particular predicate.

64

Chapter 14: Filter Factors

Filter Factor Formulas - a sampling

Predicate Type Formula Default Filter Factor

COL = value or COL = :hostvar 1 / FIRSTKEYCARDF .04

COL <> value or COL <> :hostvar 1 – (1 / FIRSTKEYCARDF) .96

COL IN (list of values) (list size) * (1 / FIRSTKEYCARDF) .04 * (list size)

COL NOT IN (list of values) 1 – ((list size) * (1 / FIRSTKEYCARDF)) 1 – (.04 * (list size))

COL IS NULL 1 / FIRSTKEYCARDF .04

COL IS NOT NULL 1 – (1 / FIRSTKEYCARDF) .96

COLA = COLB 1/FIRSTKEYCARDF [COLA or COLB]

whichever is smaller

.04

COL < value … <= ¬> (LOW2KEY-value)/(HIGH2KEY-

LOW2KEY)

.33

COL > value … >= ¬< (HIGH2KEY-value)/(HIGH2KEY-

LOW2KEY)

.33

COL LIKE '%char’ or COL LIKE

'_char'

1 1

65

Filter Factor
Example

◎ Consider the following query:

◎ What is the filter factor?
◎ From the table on the previous slide:

1/FIRSTKEYCARDF

◎ Assume FIRSTKEYCARDF is 9… making the FF 1/9
or .1111

◎ Db2 assumes 11% of the rows from this table will
satisfy the request

66

 SELECT Empno, Lastname, Sex

 FROM Emp

 WHERE Workdept = ′A00′;

Chapter 16:
Access Paths

and Explain

◎ The Explain command is used to show the access
paths chosen by the DB2 optimizer for SQL stmts.
◎ Explain populates a series of tables with access path

information and those tables can be queried, enabling
us to see the access paths that will be used.

◎ The subject of an Explain can be a single SQL
statement, or multiple SQL statements in a program, or
even the dynamic statement cache.

◎ The Explain tables are standard Db2 tables that must be
defined with predetermined columns, data types, and
lengths. The exact definitions are slightly different for
Db2 for z/OS and Db2 for LUW.

68

EXPLAIN
Tables – z/OS

vs. LUW

For Db2 for z/OS, sample
DDL for the Explain tables
in the member DSNTESC
of the SDSNSAMP library.
DB2 12 has 20 explain
tables and can also be
created by executing a
new stored procedure
called
ADMIN_EXPLAIN_MAINT.

For Db2 for LUW, you
can use the
SYSPROC.SYSINTALL
OBJECTS procedure to
create the Explain
tables. If you would
like to review the DDL
for the Explain tables,
it can be found in the
directory:
INSTHOME/sqllib/misc

69

The tables are similar but can differ, so always check to ensure
that you have the right version of the Explain tables for your Db2,
system, and version.

Running
Explain

◎ Explain can be run in the same manner as any
other SQL statement.

◎ To Explain a single SQL statement, precede the
SQL statement with the Explain command as
follows:

◎ You can also Explain an entire program by
specifying EXPLAIN(YES) on when you Bind the
program

70

EXPLAIN ALL SET QUERYNO = n FOR

 SQL statement;

Interpreting
Explain Output

This is the subject for an
entire presentation
of its own; some advice
◎ Learn the access paths

(described earlier)
and how they are specified in
the plan tables

◎ Use a visual explain tool to
make access path
reviews easier
◎ IBM Data Studio
◎ IBM Data Server Manager
◎ Other vendor tools

71

Db2 for z/OS
◎ When you bind

your program
you can choose
to enable query
parallelism.

◎ Multiple
parallel tasks
used to access
the data.

72

Chapter 17: Parallelism

Parallelism in
Db2 for LUW

◎ Db2 for LUW supports symmetric multiprocessor
(SMP) machines.
◎ This means more than one processor can access the

database, allowing the execution of complex SQL
requests to be divided among the processors.

◎ This division of a single database operation into
multiple tasks run in parallel within a single database
partition is called intrapartition parallelism.

◎ From an application perspective, specifying
parallelism is accomplished much the same as with
Db2 for z/OS, using the DEGREE bind option or the
CURRENT DEGREE special register.

73

Types of
Queries That

Can Benefit
from

Parallelism

◎ The best candidates for parallel processing
are I/O-bound queries.

◎ For example, the following queries are
potential candidates for query I/O parallelism:
◎ Queries accessing large amounts of data but

returning only a few rows;

◎ Queries using column functions (e.g. AVG,
COUNT, MIN, MAX, SUM);

◎ Queries against tables having long rows.

Chapter 19:
Stored

Procedures

◎ There are six high-level use cases where
stored procedures might be useful for your
project:
◎ Reusability

◎ Consistency

◎ Data integrity

◎ Maintenance

◎ Performance, and

◎ Security

75

Stored Procedures can Reduce Network Calls

76

Avoid
One-Size-Fits-All
Implementations

◎ Be careful about implementing an application that
relies too heavily on stored procedures. Sometimes
“advice” is offered by well-meaning architects to use
stored procedures for all database access.
◎ For web-exposed applications, stored procedures can

protect against SQL injection attacks.

◎ Additionally, for developers using an ORM
(object/relational mapping) tool such as Hibernate,
stored procedures can be beneficial to avoid the
inefficient SQL code typically generated by these tools.
■ If neither of these two situations apply, make sure that another

compelling reason exists before requiring that all database access is
accomplished using only stored procedures.

77

Chapter 20:
Dynamic vs

Static SQL

Dynamic SQL
◎ Dynamic SQL is coded

and embedded into an
application program
differently than static
SQL. Not hard-coded, SQL
is built “on the fly” as it
executes.

◎ Dynamic SQL statements
must be compiled using
the PREPARE statement;
or, alternately, an implicit
PREPARE is issued behind
the scenes when
implementing the
EXECUTE IMMEDIATE
flavor of dynamic SQL.

Static SQL
◎ Static SQL is hard-coded

and embedded into an
application program. The
SQL is bound into a
package, which
determines the access
path that DB2 will use
when the program is run.

◎ Although dynamic SQL is
more flexible than static,
static SQL offers some
flexibility by using host
variables.

Static vs.
Dynamic SQL

Considerations

When to favor dynamic over static SQL:
◎ Performance sensitivity of the SQL statement

◎ Dynamic SQL will incur a higher initial cost per SQL statement due to the
need to prepare the SQL before use. But once prepared, the difference in
execution time for dynamic SQL compared to static SQL diminishes.

◎ Data uniformity
◎ Dynamic SQL can be more efficient than static SQL whenever data is:

■ Non-uniformly distributed. (e.g. cigar smokers skews male)

■ Correlated (e.g. CITY, STATE, and ZIP_CODE data will be correlated)

◎ Use of range predicates

■ The more frequently you need to use range predicates (<, >, <=, >=,
BETWEEN, LIKE) the more you should favor dynamic SQL.

■ The optimizer can take advantage of distribution statistics & histogram
statistics to formulate better access paths because the actual range will
be known.

Static vs.
Dynamic SQL

Considerations
(continued)

◎ Repetitious Execution
◎ As the frequency of execution increases, favor static SQL

■ Or perhaps dynamic SQL with local dynamic statement caching
(KEEPDYNAMIC YES).

◎ The cost of PREPARE becomes a smaller percentage of the overall run time
of the statement the more frequently it runs (if cached prepare is reused).

◎ Nature of Query
◎ When you need all or part of the SQL statement to be generated during

application execution favor dynamic over static SQL.

◎ Run Time Environment
◎ When the database objects may not exist at precompile time, dynamic SQL

might be a better option than static specifying VALIDATE(RUN).

◎ Frequency of RUNSTATS
◎ When your application needs to access data that changes frequently and

dramatically, it makes sense to consider dynamic SQL.

Chapter 21:
Writing SQL –
Many Ways to

Skin a Cat

◎ SQL is a flexible language and you can code a query
multiple different, compatible ways to end up with the
same, correct answer

◎ Try multiple different formulations and test them for
performance
◎ Instead of just stopping when you get one that works

◎ Example: LIKE vs. OR vs. IN 81

 SELECT Empno, Lastname, Sex

 FROM Emp

 WHERE Workdept LIKE ′A%′;

 SELECT Empno, Lastname, Sex

 FROM Emp

 WHERE Workdept IN (′A00′, ′A01′, ′A02′…);

 SELECT Empno, Lastname, Sex

 FROM Emp

 WHERE Workdept = ′A00′

 OR Workdept = ′A01′

 OR Workdept = ′A02′…

;

Another
Example

82

SELECT ColA, ColB, Col6

FROM Table1

WHERE Col1 NOT BETWEEN ′A′ AND ′G′;

SELECT ColA, ColB Col6

FROM Table1

WHERE COL1 >= ′H′;

SELECT ColA, ColB, Col6

FROM Table1

WHERE Col1 BETWEEN ′H′ AND ′Z′;

Of course, we
don’t have
time to go

through all the
chapters…

◎ Chapter 22: SQL Tips and
Techniques for
Performance

◎ Chapter 23: Tweaking
SQL

◎ Chapter 24: Using
Optimization Hints

◎ Chapter 25: Working with
Views

◎ Materialization vs.
Merge

◎ Chapter 26: More
Complex SQL
Considerations

◎ Temporal SQL

◎ Recursive SQL

◎ Chapter 27: Testing
Considerations

◎ Chapter 28: DevOps,
Agile and Continuous
Delivery

◎ Chapter 29: Resources

83

84

Contact Information

Craig S. Mullins
Mullins Consulting, Inc.

15 Coventry Ct
Sugar Land, TX 77479
craig@craigsmullins.com
www.mullinsconsulting.com

Use code db2N for 10% off print edition of book

Use code db2W for 5% off ebook edition of book

Expires 6/30/2020

https://tinyurl.com/db2-craig

mailto:craig@craigsmullins.com

